
ASTRON 449, Winter 2019 – Problem Set 5

Due Thu March 14, in class.

REGULAR PROBLEMS:

1. Epicyclic frequency for different rotation curves. Evaluate the angular frequency Ω and

epicyclic frequency κ for the following rotation curves. In each case, express κ in terms of Ω:

a) vc(r)=const. (flat)

b) vc(r) =
√
GM/r (Keplerian)

c) vc(r) = vc(R0)(R/R0) (linear)

2. Self-gravitating Q = 1 disk model. A useful (albeit not completely self-consistent) model

for galaxies with flat rotation curve assumes that a gas disk is in radial centrifugal balance in an

isothermal potential with velocity dispersion σ. Define the total mass and the gas mass within a

radius r as Mtot(r) and Mg(r), respectively. Surface densities are defined as Σx(r) ≡ Mx(r)/πr2

and we define the gas mass fraction fg ≡ Σg/Σtot. We assume that fg is a constant.

a) Show that the enclosed mass Mtot(r) = 2σ2r/G, that the circular velocity vc =
√

2σ, and

that the angular frequency Ω =
√

2σ/r.

b) For a thin gas disk in a spherical gravitational potential, show that the equation of hydrostatic

equilibrium is (to first order)
∂P

∂z
= −ρΩ2z, (1)

where P is the gas pressure, ρ is the gas density, and z is the coordinate normal to the disk plane.

c) Argue that this can be approximated (to order unity) by

P ≈ ρ̄h2Ω2, (2)

where h is the disk scale height.

d) If turbulence dominates the effective gas pressure, P ≈ PT ≈ ρ̄c2
T, where cT is the turbu-

lent velocity. Thus show that the scale height of the disk is set by the ratio of the turbulent

velocity to the angular frequency in the disk,

h ≈ cT

Ω
. (3)

e) There is strong observational evidence and support from numerical experiments that star-forming

galactic disks self-regulate to a Toomre Q parameter near unity,

Q =
κcT

πGΣg
≈ 1, (4)
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where κ is the epicyclic frequency. This can be understood intuitively from the fact that galactic

disks tend to cool (dissipate their turbulent energy) until Q ≈ 1 at which point they become grav-

itationally unstable and form stars. Stellar feedback then drives turbulence in the disk, ensuring

that Q does not drop significantly below unity.

Evaluate the epicyclic frequency for the isothermal potential and express Q in terms of σ and

r.

f) Neglecting the contribution of elements heavier than hydrogen, we may define the mean hy-

drogen number density in the disk as n̄H ≡ ρ̄/mp. Show that

n̄H =

√
2σ2

πGQr2mp
. (5)

Ultra-luminous infrared galaxies (ULIRGs) have gas-rich nuclear disks of size r ≈ 100 pc and veloc-

ity dispersion σ ≈ 200 km/s. Evaluate the mean hydrogen number density using these parameters

and compare with the mean interstellar medium density n̄H ≈ 1 cm−3 in the solar neighborhood.

g) Using the definitions of Q and fg, prove the following three useful relationships between disk

scale height and radius, and disk turbulent velocity and potential velocity dispersion:

h

r
=

Q

23/2
fg;

cT

σ
=
Q

2
fg;

h

r
=

1√
2

cT

σ
. (6)

To get the correct dimensionless pre-factors, you should assume that the disk scale height is related

to the gas surface density via Σg = 2hρ̄.

For a disk with Q ≈ 1, these equations show that the disk thickness and turbulent velocity disper-

sion are set by the gas mass fractions fg. Massive local spiral galaxies have typical fg ≈ 10% while

massive star-forming galaxies at high redshift (z = 2) typically have fg ≈ 50%. As equation (6)

predicts, z = 2 star-forming galaxies are observed to have disk thicknesses and turbulent velocity

dispersions a factor ≈ 5 higher than local galaxies.

3. Winding of spiral arms and application to swing amplification. Consider the spiral

arm geometry in Figure 1, where the pitch angle α is defined. Assume that (aside from deviations

due to the spiral arm) stars are in circular orbits around the galaxy.

a) Show that the pitch angle satisfies

cotα =

∣∣∣∣R ∂φ∂R
∣∣∣∣ , (7)

where the partial derivative is evaluated along the spiral arm.

b) Suppose that at t = 0, we paint a narrow stripe or arm radially outward across the disk.

This is what we called a ‘material’ arm in class, because it follows a fixed set of stars. The initial

equation for the stripe is φ = φ0, where φ is the azimuthal angle. The disk rotates with angular
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Fig. 1.— Geometry for problem 2. The pitch angle α at any radius R is the angle between the

tangent to the arm and the circle R = const. By definition, 0 < α < 90◦ for trailing arms (like the

one shown). Leading arms are defined such that 90 < α < 180◦.

frequency Ω(R). When the disk is in differential rotation (Ω varying with R), the arm winds as

the disk rotates. Show that the pitch angle of the material after time t is

cotα = −RtdΩ

dR
= 2At, (8)

where A ≡ −(1/2)RdΩ/dR is one of Oort’s constants and quantifies shear in the disk.

c) Evaluate α numerically for a representative disk galaxy with a flat vc = 200 km s−1 rota-

tion curve, R = 5 kpc, and t = 10 Gyr. Compare your answer with the typical pitch angle α = 15◦

observed in spiral galaxies. Can observed spirals trace material arms?

d) Show that the rate of change of the pitch angle is

dα

dt
= − 2A

1 + 4A2t2
. (9)

e) When the arm is tightly wound (corresponding to t→ ±∞), its rotation rate dα/dt is slow, but

as it swings from leading to trailing at t = 0 it reaches a maximum rotation rate of 2A. For a

galaxy with flat rotation curve, show that 2A ∼ Ω ∼ κ.

Thus there is a temporary near-match between epicyclic motion and the rotating spiral feature

(both of which are in the same sense), which enhances the effect of the gravitational force from the

spiral on the stellar orbit – and the contribution of the star’s own gravity to the spiral perturbation.

This is what we call swing amplification.
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f) Do initially trailing perturbations get swing amplified like initially leading ones? Explain your

answer.

4. Orbital decay due to dynamical friction. Approximate the density distribution of a galaxy

as a singular isothermal sphere,

ρ(r) =
σ2

2πGr2
, (10)

with Maxwellian velocity distribution.

a) Evaluate the dynamical friction force experienced by an object of mass M in a circular or-

bit at radius r. Show that the answer can be expressed in terms of M , r, and ln Λ only, with no

explicit dependence on σ. Simplify your answer as much as possible.

b) Use the fact the subject mass M spirals in toward the center of the galaxy following a se-

ries of nearly circular orbits to evaluate the time tfric for M to reach r = 0. Your answer should

involve only ln Λ (which you can assume is constant), the initial radius ri, σ, and M .

c) Suppose that a black hole of mass M = 108 M� is initially at radius ri = 5 kpc from the

center of a galaxy of velocity dispersion σ = 200 km s−1. Evaluate tfric numerically for this black

hole. By comparing to the typical age 10 Gyr of galaxies, what can you say about where massive

black holes should be found in galaxies today?

d) Consider now globular clusters with a typical mass M = 2 × 105 M�, also in orbit in a galaxy

with σ = 200 km s−1. Evaluate the radius within which tfric < 10 Gyr for such globular clusters.

According to your result, is it surprising that globular clusters are numerous in the halos of galaxies?

e) Consider a cosmological N−body (+ hydrodynamics) simulation following the formation of a

Milky Way-like galaxy. The Milky Way’s central supermassive black hole has a mass MBH = 4×106

M� and the simulation has resolution elements of mass mb = 106 M� (this is representative of many

state-of-the-art large-volume simulations). Explain why this simulation cannot self-consistently

capture the dynamical friction acting on the supermassive black hole and hence cannot reliably

predict the trajectory of the black hole (e.g., as progenitor galaxies merge and their black holes are

displaced from galaxy center).

COMPUTATIONAL PROBLEMS:

Reminder concerning units: Treat Newton’s constant G as a variable whose value can be mod-

ified in the code. By default, we work in dimensionless units and set G = 1.

The Toomre analysis that we covered in class is for the local stability of infinitely thin rotating

disks to axisymmetric perturbations. In order to investigate the global stability of disks and to

follow the non-linear development of gravitational instabilities seeded by arbitrary perturbations,

it is in general necessary to use numerical simulations.
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In this problem set, you will use the 2D PM code that you developed in PS4 to evolve a few illus-

trative disk simulations. You will also learn how to generate initial conditions for such simulations.

C1. Generating ICs: 2D Mestel disk+halo model. We construct a 2D model consisting of

a disk of “live” disk particles (the N−body particles) along with a “fixed” gravitational potential

which mimics the effects of a dark matter halo or large bulge. To do this, we use properties of the

Mestel disk model, which is discussed in BT2, §2.6.1a.

For the live stellar disk, the initial mass surface density is parameterized by

Σd(R) =

{
fdv

2
c

2πGR if R ≤ Rmax

0 if R > Rmax,
(11)

where fd is the disk fraction parameter. As Rmax → ∞, this surface density is that of a Mestel

disk with constant circular velocity
√
fdvc. A property of the Mestel disk is that the centripetal

acceleration at radius R is a function only of the enclosed mass M(R):1 acentripetal,d(R) = fdv
2
c/R.

We want the centripetal acceleration due to the total mass distribution (including the fixed halo)

to produce a constant circular velocity vc within the disk, so we set the fixed halo centripetal ac-

celeration to acentripetal,h(R) = (1− fd)v2
c/R. Then, the total centripetal acceleration within Rmax

is acentripetal,tot = acentripetal,d + acentripetal,h ≈ v2
c/R, so disk particles initialized on circular orbits

with velocity vc will initially satisfy force balance.

a) For a pure stellar disk, the Toomre Q parameter is

Q =
σRκ

3.36GΣd
, (12)

where σR is the one-dimensional velocity dispersion in the radial direction. The 3.36 pre-factor in

the denominator (rather than π) is obtained when performing the stability analysis for a stellar

disk rather than a fluid disk. In this expression, the epicyclic frequency κ should be evaluated for

the total potential (including the halo component), since the total potential sets the disk rotation.

Derive an expression for σR as a function of Q and vc valid within Rmax, for the above Mestel

disk+halo model.

b) Write a Python program to generate initial conditions for the live stellar disk as a function of

the following parameters: Rmax, vc, Q (used to evaluate σR), fd, and N . Your program should

produce a list of particle positions and velocities randomly sampling the phase-phase distribution

function of the initial disk and write them to an ASCII file in the format that can be used as input

to your pm2d.py program:

1This is always true for spherically-symmetric mass distributions in 3D, but it is not in general true for axisym-

metric disks.



– 6 –

1 m1 x1 y1 vx1 vy1

2 m2 x2 y2 vx2 vy2

...

N mN xN yN vxN vyN.

Assume that all N particles have the same mass m.

The initial spatial distribution of disk particles should follow equation (11) for the mass surface

density. To see how particles sample the disk in radius, evaluate dMd/dR and use the result to

randomly assign R coordinates. Since the disk is axisymmetric, the polar angle coordinate φ (such

that x = R cosφ and y = R sinφ) should uniformly sample angles ranging from 0 to 2π.

Within the disk, we assume that the initial velocity distribution consists of counter-clockwise circu-

lar orbits with velocity vc, on top of which we add Gaussian velocity perturbations, so that Q > 0.

Assuming that the velocity perturbations are isotropic, we have σvx = σvy = σR and orthogonal

velocity perturbation components are independent.

Show that these assumptions imply that the initial velocity distribution function at any point in

the disk can be expressed as:

f(vx, vy)dvxdvy = f(vx)f(vy)dvxdvy, (13)

where

f(vx)dvx =
1√

2πσR

exp

[
−(vx + vc sinφ)2

2σ2
R

]
dvx (14)

and

f(vy)dvy =
1√

2πσR

exp

[
−(vy − vc cosφ)2

2σ2
R

]
dvy. (15)

To randomly assign positions and velocities to particles following the desired distributions, you can

use functions in Python’s random module. The functions random.random() and random.gauss(),

in particular, may be useful.

c) To implement the fixed halo potential, modify your pm2d.py code so that the total acceler-

ation is a sum of the acceleration due to the live particles and a fixed central force field, i.e.

atot = apm + afixed, where apm is the acceleration evaluated using the PM method while afixed

is a term evaluated analytically. Note that the total energy of the system should then include a

component due to the fixed potential.

You can hardcode parameters of the afixed function, i.e. modify the parameters directly in the

Python source file for different simulations rather than add command line options.

C2. Disk simulations. You will now produce initial conditions for and evolve four different simu-

lations with varying Toomre Q parameter and disk fraction to study the effects of these parameters



– 7 –

on the development of a stellar disk.

In all simulations, keep the following parameters the same:

• N = 105 particles, a PM mesh with 1024 grid nodes along each direction in the physical

domain, physical width of the PM mesh (gridsize) = 10, and a Plummer softening length

ε = 0.05. This spatial resolution is necessary in order to capture the fine-scale structure that

develops in some of the simulations.

• Rmax=3 and vc = 2π. This implies that the orbital period is unity at R = 1 (longer at larger

R).

• Leapfrog integrator with timestep dt = 0.01.

Evolve each simulation for a time t > 6 and write to disk enough particle snapshots to plot the

data at t = 0, 1, 2, 3, 4, 5, 6 to see how the disk structure evolves with time. Without much

optimization, my code took ∼ 40 mins to run each simulation with these parameters (you can

evolve a few simulations at the same time on multicore computers). Note that simulations with

this large N would have been impossible to evolve with your direct summation code!

For each simulation, produce a plot following the example in Figure 2 to show how the disk structure

develops from t = 0 to t = 6, as well as energy and angular momentum conservation diagnostics

to help validate your results. Tip: Instead of a scatter plot with 105 points in each panel, use the

matplotlib function hexbin to plot your disks as 2D histograms. This will make your plots much

smaller and can also help show structures better.

Following are the parameters to vary for your four simulations:

• Default model (Q > 1, large halo fraction): Q = 1.25 and fd = 0.15.

• Low-Q model: Q = 0.75 and fd = 0.15.

• No-halo model: Q = 1.25 and fd = 1.

• Massive perturber model. Default model but with one additional massive particle inserted in

the initial conditions, modeling the encounter with a massive perturber (e.g., another galaxy).

For the massive perturber, use the following parameters: m = 10 (how does this compare to

the mass of the stellar disk?), x0 = 4.9, y0 = 4.5, vx,0 = −5, vy,0 = 0.

By comparing the results of your four simulations, comment on the following (one-sentence an-

swers): 1) effect of lower vs. higher Q; 2) effect of a fixed halo component; and 3) effect of a

massive perturber.

To upload: Your plots, copies of your Python codes, and answers to the questions. The ICs and

particle snapshots for N = 105 particles are large – please don’t upload these!
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Fig. 2.— Example multi-panel plot to summarize the results of your disk simulations.


